当前位置:首页 > 短信快讯 > 正文内容

关于等比数列的前n项的积(等比数列的前n项积怎么求?)

wang2年前 (2023-11-12)235

关于等比数列的前n项的积

等比数列{an}前n项的积为Tn, 若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中,哪个也是常数项?
解:由等比数列通项公式,等差数列求和公式,得到Tn=a1^n*q^[(n^2-n)/2],
故可知T10=a1^10*q^45,
T13=a1^13*q^78,
T17=a1^17*q^136,
T25=a1^25*q^300
联立方程,进行推导,可得到,
T17=7(a3)*4(a6)*6(a18),是常数项,其余几个数均不是常数项。

等比数列的前n项积怎么求?

假设等比数列的通项公式为a*b^n
前n项积为a^n * b^(1+2+...+n)
=a^n * b^(n(n+1)/2)

下面分享相关内容的知识扩展:

高中数学必修5《等比数列》教案

  高中数学必修5《等比数列》教案【一】

  教学准备

  教学目标

  1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

  2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

  归纳——猜想——证明的数学研究 *** ;

  3、数学思想:培养学生分类讨论,函数的数学思想。

  教学重难点

  重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

  难点:等比数列的性质的探索过程。

  教学过程

  教学过程:

  1、 问题引入:

  前面我们已经研究了一类特殊的数列——等差数列。

  问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

  (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  要想确定一个等差数列,只要知道它的首项a1和公差d。

  已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

  师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  (之一次类比)类似的,我们提出这样一个问题。

  问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

  (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

  2、新课:

  1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

  师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

  师生共同简要回顾等差数列的通项公式推导的 *** :累加法和迭代法。

  公式的推导:(师生共同完成)

  若设等比数列的公比为q和首项为a1,则有:

   *** 一:(累乘法)

  3)等比数列的性质:

  下面我们一起来研究一下等比数列的性质

  通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

  问题4:如果{an}是一个等差数列,它有哪些性质?

  (根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

  3、例题巩固:

  答案:1458或128。

  例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.

  例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

  (本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

  1、 小结:

  今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

  我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

  2、 作业:

  P129:1,2,3

  思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

  教学设计说明:

  1、 教学目标和重难点:首先作为等比数列的之一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究 *** ,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究 *** 是有利的。这也就成了本节课的重点。

  2、 教学设计过程:本节课主要从以下几个方面展开:

  1) 通过复习等差数列的定义,类比得出等比数列的定义;

  2) 等比数列的通项公式的推导;

  3) 等比数列的性质;

  有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

  知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

  在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理 *** 的应用。培养学生应用知识的能力。

  在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

  通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

  等比性质的研究是本节课的 *** ,通过类比

  关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

  高中数学必修5《等比数列》教案【二】

  教学准备

  教学目标

  知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

  能力目标:培养运用归纳类比的 *** 发现问题并解决问题的能力及运用方程的思想的计算能力。

  德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

  教学重难点

  本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。

  本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。

  教学过程

  二、教法与学法分析

  ①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造民主的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的 *** ,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。

  三、教学程序设计

  (4)等差中项:如果a 、 A 、 b成等差数列,那么A叫做a与b的等差中项。

  说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

  2.导入新课

  本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:

  1 , 2 , 4 , 8 , … , 263

  再来看两个数列:

  5 , 25 ,125 , 625 , ...

  ···

  说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:

  判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。

  -1 , -2 , -4 , -8 …

  -1 , 2 , -4 , 8 …

  -1 , -1 , -1 , -1 …

  1 , 0 , 1 , 0 …

  提出问题:(1)公比q能否为零?为什么?首项a1呢?

  (2)公比q=1时是什么数列?

  (3)q>0是递增数列吗?q<0递减吗?

  说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈欲望。

  3.尝试推导通项公式

  让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。

  推导 *** :叠乘法。

  说明:学生从 *** 一中学会从特殊到一般的 *** ,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。 *** 二是让学生掌握“叠乘”的思路。

  4.探索等比数列的图像

  等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?

  变式2.等比数列{an}中,a2 = 2 , a9 = 32 , 求q.

  (学生自己动手解答。)

  说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1 ,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元 *** 。

  6.探索等比数列的性质

  类比等差数列的性质,猜测等比数列的性质,然后引导推证。

  7.性质应用

  例3.在等比数列{an}中,a5 = 2 , a10 = 10 , 求a15

  (让学生自己动手,寻求多种解题 *** 。)

   *** 一:由题意列方程组解得

   *** 二:利用性质2

   *** 三:利用性质3

  例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。

  8.小结

  为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。

  1、等比数列的定义,怎样判断一个数列是否是等比数列

  2、等比数列的通项公式,每个字母代表的含义。

  3、等比数列应注意那些问题(a1≠0,q≠0)

  4、等比数列的图像

  5、通项公式的应用 (知三求一)

  6、等比数列的性质

  7、等比数列的概念(注意两点①同号两数才有等比中项

  ②等比中项有两个,他们互为相反数)

  8、本节课采用的主要思想

  ——类比思想

  9.布置作业

  习题3.4 1②、④ 3. 8. 9.

  10.板书设计

等比数列a1, a2, a3, a4. an,公比为q, q为

解:等比数列各项均为正,则首项a1>0,公比q>0。

(a2+a3)/(a1+a3)=6/10

(a1q+a1q²)/(a1+a1q²)=3/5

(q+q²)/(1+q²)=3/5

2q²+5q-3=0

(q+3)(2q-1)=0

q=-3(舍去)或q=½

q=½代入a1+a3=10

a1(1+q²)=10

a1=10/(1+q²)=10/(1+½²)=8

an=a1qⁿ⁻¹=8·½ⁿ⁻¹=½ⁿ⁻⁴

数列{an}的通项公式为an=½ⁿ⁻⁴

除法的法则:

从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数。

除到被除数的哪一位,就在那一位上面写上商。

被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。

除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。

被除数连续除以两个除数,等于除以这两个除数之积。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)除以一个数就=这个数的倒数。

等差数列{an},公差d≠0,从an中取出部分项组成等比数列。。。。k1=1,k2=2,k3=8

等差数列{an},公差d≠0,从an中取出部分项组成等比数列a(k1),a(k2),a(k3),.....a(kn)k1=1,k2=2,k3=8,(1)求公比 (2)求k1+k2+....+kn
之一问会了。。。求解第二问
前三项是: a0+d , a0+2d , a0+8d
根据等比数列,之一项和第三项的乘积是第二项的平方,所以
a0^2 + 9a0 * d + 8d^2 = a0^2 + 4a0* d + 4d^2
整理一下变成 5a0* d + 4d^2 = 0 => 5a0 = -4d => d = -1.25a0
所以等比数列前三项 -0.25a0 , -1.5a0 , - 9a0 所以公比是6,第n项是 -0.25a0 * 6^(n-1) = a0 + kn * -1.25a0
所以 -0.25 * 6^(n-1) = 1 - 1.25kn => 6^(n-1) = 4 - 5kn => kn = 4/5 - 6^(n-1)/5
这个数列求前n项和就好了, 前一项是常数后一项是等比数列,都好办

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。


本文链接:http://www.370seo.com/8095.html

“关于等比数列的前n项的积(等比数列的前n项积怎么求?)” 的相关文章

三d立体画的画法(立体画画法步骤图片)

三d立体画的画法(立体画画法步骤图片)

三d立体画的画法3d画立体画的制作教程如下:准备材料:铅笔、纸张、尺子等。1、先用铅笔和尺子在a4纸上画一个正方形的网格,横竖各十格,网格大小根据纸张大小而定。2、用字母A到Z,26个点在网格中分别定出相应位置,不要嫌麻烦。3、用彩铅笔勾出图案轮廓,为保证最后画出来的画有立体效果,必须严格按照格子位...

龙潭三杰前后三杰是哪三个人?龙潭三杰后三杰是指谁

龙潭三杰前后三杰是哪三个人?龙潭三杰后三杰是指谁

龙潭三杰前后三杰是哪三个人?“龙潭后三杰”熊向晖、申健、陈忠经,以及台湾地下党“三杰”吴石、朱枫、陈宝仓。龙潭三杰后三杰是指谁龙潭三杰后三杰是指熊向晖、申健、陈忠经。龙潭三杰,是指钱壮飞、李克农、胡底,他们三人一个在南京担任要职,一个留守上海主持工作,一个去天津担任“长城通讯社”社长,从而形成遥相呼...

楼顶防水一平方多少钱 楼顶防水施工步骤

楼顶防水一平方多少钱 楼顶防水施工步骤

楼顶防水一平方多少钱 楼顶防水施工步骤屋顶漏水处理的方法。屋顶漏水首先要查找好漏水的原因,然后才能对症下药,好好修理。屋顶漏水要全面细致。避免1.年年漏年年补,哪漏补哪2.图省钱,用老材料,不能解决实际问题。3.不细致,随便找人施工,自己动手或是监工,做到细致入微。 以下几种方法教你如何处理屋顶漏水...

2016年伦敦奥运金牌榜?奥运金牌榜越南参加伦敦奥运会吗?

2016年伦敦奥运金牌榜?奥运金牌榜越南参加伦敦奥运会吗?

2016年伦敦奥运金牌榜?2016年伦敦奥运会金牌榜前5位:美国46、中国38、英国29、俄罗斯24、韩国13。奥运金牌榜越南参加伦敦奥运会吗?参加了,越南第200位出场。本届奥运会一共有204个国家和地区的205个团队参加,运动员10500个。2012年伦敦奥运会开幕式即将开始,205个国家出场顺...

洛克王国可以超进化的宠物大全(洛克王国能超进化的宠物有哪些?)

洛克王国可以超进化的宠物大全洛克王国可以超进化的宠物大全如下:1、草系:宠物阳光进化;在野外研究院,进化的宠物有魔力猫,格兰球,流星猛犸象,奇丽花和空灵兽。火系:火系熔炉进化。2、在维苏威地幔,进化的宠物有火神,音速犬,火焰猿,眩目鸡和烈火飞龙。水系:命运漩涡。洛克王国能超进化的宠物有哪些?洛克王国...

7k7k洛克王国实验工坊在哪(实验工坊在哪儿,洛克王国实验工坊怎样找)

7k7k洛克王国实验工坊在哪(实验工坊在哪儿,洛克王国实验工坊怎样找)

7k7k洛克王国实验工坊在哪7k7k洛克王国实验工坊在哪 2012-3-8 16:57 提问者: 1681956 | 浏览次数:10次 我来帮他解答 输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被选为满意回答可同步增加经验值...