当前位置:首页 > 370杂谈 > 正文内容

基因编辑技术可以编辑所有基因吗(你如何看待基因编辑技术呢-)

wang2年前 (2023-09-29)210

本文共计4228个文字,预计阅读时间需要13分56秒,由作者编辑整理创作于2023年09月26日 17点53分31秒。

基因编辑技术可以编辑所有基因吗

即便当前不能,以后会能的。
基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。
在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表的序列特异性核酸酶技术以其能够高效率地进行定点基因组编辑, 在基础研究、基因治疗和遗传改良等方面展示出了巨大的潜力。
而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

你如何看待基因编辑技术呢?

你如何看待基因编辑技术呢?
你如何看待基因编辑技术呢?
你如何看待基因编辑技术呢?

什么是基因编辑

顾名思义,“基因编辑”就是指对基因进行修改,实现对特定DNA片段的敲除、插入的基因重组技术。

基因编辑可以追溯到上世纪70年代,CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。

与前两代技术相比,其成本低、 *** 简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。你如何看待基因编辑技术呢?

CRISPR实际上就是一种基因编辑器,是细菌用以保护自身对抗病毒的一个系统,也是一种对付攻击者的基因武器。后来研究者发现,CRISPR可以用来删除、添加、激活或抑制其他生物体的目标基因,这些目标基因包括人、老鼠、斑马鱼、细菌、果蝇、酵母、线虫和农作物细胞内的基因,这也意味着基因编辑器是一种可以广泛使用的生物技术。

基因编辑的应用:

1. 在医学上用于治疗基因遗传病 CRISPR介导的“基因组编辑”技术为在细胞中实现更多的遗传应用打开了一扇大门,可促使科学家及医疗人员更好地了解人类疾病及其潜在疗法。基因编辑可治疗遗传病,尤其是单基因遗传病。

据估计,大概有上百个疾病由单基因突变引起,其中多数属于遗传病。要从根本上解决问题,有时只能通过基因编辑彻底求证治病基因。

目前,CRISPR技术已被应用于治疗血友病、地中海贫血等多种遗传性疾病的细胞研究或动物研究。 你如何看待基因编辑技术呢?

2在农业上培育出品质优良的动物植物品种 美国和日本相关机构目前的倾向是CRISPR改造的特定农产品不作为转基因食品进行监管。

3建立不同基因型的动物模型这从之一代基因编辑技术就开始做了。建立不同基因型的动物模型的意义在于,对遗传性疾病,这些基因和疾病之间的关系,这些模型可以给出一个比较确切的答案。

现在基因编辑距离应用于临床还有很长一段距离,比如基因编辑的准确定位,如何避免脱靶;会不会有免疫反应;系统毒性等多方面的问题。

下面分享相关内容的知识扩展:

基因编辑MC-3T3细胞系——结合CRISPR助力骨相关研究 |源井

1981年, 科学家成功从新生小鼠头盖骨中获得了成骨细胞模型--MC-3T3细胞。这种成骨细胞系在体外保持了向成骨细胞分化和矿化的能力,使其成为骨生物学研究中非常有用的细胞模型。MC-3T3能够产生胶原并分化为成骨样细胞,在体外和体内形成钙化组织。 早期的研究表明,骨组织通过成骨细胞骨形成和破骨细胞骨吸收不断重塑,以维持骨体积和体内平衡。因此,骨重建被认为是由成骨细胞、破骨细胞和骨细胞之间的串扰来调节的。MC-3T3细胞也成为了此类骨相关研究的重要体外模型。

MC-3T3细胞具有向成骨细胞分化的能力。基于CRISPR/Cas9的MC-3T3细胞基因编辑可以加速骨研究。MC-3T3已经广泛应用于以下几类研究:

1. 型胶原蛋白生物合成,这是细胞外骨基质中最重要和最丰富的有机成分,提供骨骼强度和柔韧性。

2. WNT信号通过调节成骨细胞增殖分化和基质矿化而成为骨形成的重要调节因子。

3. 转化生长因子TGFβ信号转导,骨重建异常,骨转换增加。

4. 成骨细胞分化,一种调控成骨细胞分化的成骨细胞特异性转录因子。功能丧失导致成骨细胞分化和骨形成减少。

基因编辑和细胞模型的建立可以促进功能基因组学、信号通路、代谢、细胞死亡、药物发现、药物反应和癌症等领域的研究。目前,成骨细胞模型(MC-3T3)广泛应用于细胞分化、旁分泌因子对骨形成或吸收的影响研究。最近的研究发现,影响骨组织稳态的突变蛋白和新的途径参与骨骼发育和维持。为了加速骨生物学研究,利用CRISPR/Cas9系统可以在MC-3T3细胞中实现基因组编辑。CRISPR-U™ 是源井生物独立研发的,可用于MC-3T3细胞快速精确基因编辑的系统。通过CRISPR构建的细胞模型使研究各种骨骼疾病的机制成为可能,这些疾病主要与骨骼发育、吸收、骨肉瘤和代谢过程有关。在阐明致病机制的基础上,这些细胞模型可以与药物筛选和其他治疗研究相结合。

利用CRISPR介导的基因敲除MC-3T3,发现一种预防或逆转骨质疏松症的新途径

骨质疏松症是一个巨大且日益严重的公共健康问题。骨质疏松症以低骨量和骨微结构缺陷为特征,导致骨折的易感性增加。骨骼健康的维持有赖于骨吸收的破骨细胞和成骨细胞的协调和平衡作用,从而实现骨骼的净平衡。因此, 临床上需要寻找新的治疗骨质疏松症的分子靶点,特别是那些在 *** 骨形成的同时抑制骨吸收的分子靶点。 维甲酸受体相关孤儿受体β(Rorβ)是一种新的成骨细胞分化的负调节因子,在从老年骨质疏松小鼠分离的骨髓源性骨祖细胞中Rorβ的表达高度升高,提示Rorβ在介导年龄相关性骨丢失中的潜在作用。在成骨前小鼠细胞系MC-3T3中的过度表达研究表明,已知的成骨途径有显著的调节作用,支持Rorβ调节成骨的关键作用。 研究人员应用CRISPR/Cas9基因编辑技术证明,成骨细胞中Rorβ的丢失增强了Wnt信号传导,特别是通过在Wnt靶基因Tcf7和Opg的启动子中增加β-catenin对T细胞因子/淋巴增强因子(Tcf/Lef)DNA结合位点的招募。因此,通过增加Rorβ缺陷MC-3T3细胞中骨保护素(OPG)的分泌,增加成骨基因的表达并抑制破骨细胞的形成。

CRISPR介导的Rorβ突变体的构建及基因表达分析

Rorβ基因有两个亚型(Rorβ1和Rorβ2),其中Rorβ2亚型不可检测。因此,Rorβ1是Rorβ基因的代表。Rorβ1的ATG起始密码子位于外显子1的3′端,因此,靶向外显子2进行基因编辑。设计3个gRNA,在测试编辑效率后,选择一个gRNA删除MC-3T3细胞中的Rorβ。用非特异性gRNA产生的对照细胞系MC3T3-Cont。mc3t3drorβ细胞系的克隆和序列分析显示,小鼠Rorβ等位基因存在1碱基对(bp)和4-bp缺失,导致移码突变,最终导致无功能等位基因。为了分析Rorβ缺失对成骨细胞基因表达的影响,从成骨培养基中培养的MC3T3-Cont和MC3T3-DRorβ细胞中采集不同时间点的RNA样本。QPCR分析显示骨标记基因在MC3T3-DRorβ细胞中的表达显著增加。

Rorβ缺陷成骨细胞通过β-catenin依赖机制显示增强的Wnt信号

突变的MC3T3-DRorβ细胞被用来识别典型细胞通路的改变。他们观察到Wnt/β-catenin通路的显著改变,以及MC3T3-DRorβ细胞中调节该通路的几种已知的调节因子的表达。IPA分析显示T细胞因子/淋巴增强因子(Tcf/Lef)DNA结合位点显著富集。这些结果表明,成骨细胞中Rorβ的丢失导致Wnt/β-catenin通路的改变。RNAseq证实了两个著名的Wnt靶基因Opg和Tcf7,并观察到该基因在Rorβ缺陷细胞中的表达在整个时间过程中显著上调。Wnt通路在Rorβ缺陷成骨细胞Opg和Tcf7上调中的作用,使用DKK1或JW55进行的一系列抑制剂研究发现Wnt通路因Rorβ的丢失而改变。

对MC3T3-Cont和MC3T3-DRorβ细胞进行芯片检测,以了解β-catenin调控Opg和Tcf7基因的机制。研究人员发现,在Rorβ缺陷细胞中,位于Opg和Tcf7基因启动子内的Tcf/Lef DNA结合位点的β-catenin和RNA聚合酶(RNAP)募集增加。他们验证了Rorβ抑制了TOP-FLASH Wnt报告结构中组成活性形式β-catenin(ca-βcat)的转录活性。因此,他们得出结论,Rorβ通过抑制成骨细胞Wnt反应基因启动子中Tcf/Lef结合位点的β-catenin募集来抑制Wnt活性。他们评估了OPG增加对破骨细胞生成的影响。他们发现Rorβ缺陷细胞能够通过增加OPG的产生和分泌来抑制破骨细胞的生成。

综上,Rorβ缺失对骨保护作用在骨微环境中引发多方面的反应。Rorβ的缺失通过增加Tcf7和Wnt信号反应来促进骨形成。同时,Rorβ缺失通过增加OPG的产生和分泌来影响骨吸收,从而减少破骨细胞数量和破骨细胞活性。总的来说,增加骨形成和减少骨吸收是预防骨丢失的结果。抑制Rorβ可能是防治骨质疏松症的新途径。

发文:到底该不该对人类胚胎进行基因编辑

到底该不该对人类胚胎进行基因编辑
近日广州医科大学范勇团队发表论文,宣布他们用基因编辑技术制造出一个能对艾滋病毒免疫的人类胚胎。艾滋病毒要人体内存活、繁衍,需要跟人体免疫细胞表面上的一种蛋白质结合,进入免疫细胞。有极少数人这个蛋白质的基因发生了突变,艾滋病毒没法进入免疫细胞,这些人天生就对艾滋病毒免疫。范勇团队用一种称为CRISPR/Cas9的基因编辑技术对人类胚胎细胞里头的基因组进行改造,人为让该蛋白质基因发生突变,理论上这样产生的胚胎细胞将会对艾滋病毒具有免疫力。

这是史上第二例用这种基因编辑技术改造人类胚胎细胞。之一例也是中国科学家完成的。那是在去年,中山大学生物学副教授黄军就团队用该技术修改了人类胚胎细胞中与β型地中海贫血症有关的基因。发表这两篇论文的学术期刊都没有什么影响力,然而它们都在国际上引起了广泛的关注,称得上是一年来中国生物医学领域在国际上最著名的成果,比国内那些动不动就号称有望获得诺贝尔奖的成果著名多了。

然而它们之所以著名,并非因为它们有多高的学术价值。它们的意义只是证明了CRISPR/Cas9这种基因编辑技术可以用来改造人类胚胎细胞。但是这是我们预料中的。这种基因编辑技术是近年来生物医学研究的一大热门,此前已被其他实验室用于修改其他动物细胞的基因,包括猴子胚胎细胞的基因,人类胚胎细胞的基因也能被改造一点也不意外。它们之所以引起关注,就在于竟然“敢于”也改造人类胚胎细胞的基因,这在国外、特别是在西方国家,是一个很有争议的、甚至可以说是禁忌的课题。在黄军就团队的论文发表后,国际上甚至还专门开了一次会议,讨论基因编辑技术涉及的伦理问题,要求暂停用它来改造人类胚胎,禁止用于辅助生殖。

编辑基因弊大于利辩论三辩的问题

当然是利大于弊。基因编辑技术是21世纪的伟大发现,有望治疗目前还无法治愈的遗传病,艾滋病甚至癌症等疑难杂症。但从辩证法的角度看,科学技术是把双刃剑,在未经国家允许的情况下不能擅自拿来编辑人类生殖细胞,因为这样会引起安全,伦理和道德上的种种问题。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。


本文链接:http://www.370seo.com/3969.html

“基因编辑技术可以编辑所有基因吗(你如何看待基因编辑技术呢-)” 的相关文章

石斑鱼的鱼鳞有毒吗(石斑鱼有鱼鳞片吗)

石斑鱼的鱼鳞有毒吗(石斑鱼有鱼鳞片吗)

本文共计1521个文字,预计阅读时间需要4分55秒,由作者编辑整理创作于2023年08月22日 22点13分24秒。石斑鱼的鱼鳞有毒吗石斑鱼的鱼鳞能吃吗 有毒。春节期间,广州市两家六口因吃深海鱼中雪卡毒入院,卫生和工商部门都发出了慎吃石斑等深海鱼的警告,但记者昨天巡城发现,多种石斑鱼等珊瑚鱼类在海鲜...

西湖断桥有什么故事吗-西湖的断桥残雪的故事是什么

本文共计4644个文字,预计阅读时间需要15分20秒,由作者编辑整理创作于2023年08月22日 20点20分50秒。西湖断桥有什么故事吗?  西湖断桥  断桥的典故  西湖断桥,最早叫段家桥。  很早以前,西湖白沙堤,从孤山蜿蜿蜒蜒到这里,只有一座无名小木桥,与湖岸紧紧相连。游人要到孤山去游玩,都...

有谁有电视剧孽债2的完整的演员表(孽债电视剧的小演员表)

本文共计578个文字,预计阅读时间需要1分46秒,由作者编辑整理创作于2023年08月22日 14点11分00秒。有谁有电视剧孽债2的完整的演员表梁思凡--翟天临 盛天华--张默 安永辉--杨烁(杜江) 卢晓峰--纪宁 沈美霞--姚笛 林淼-- 丁子峻 沈若尘--赵有亮 梅云清--严晓频 沈观尘--...

2021年周润发还活着吗-周润发还活着吗拜托各位了 3Q

2021年周润发还活着吗-周润发还活着吗拜托各位了 3Q

本文共计5904个文字,预计阅读时间需要19分32秒,由作者编辑整理创作于2023年08月22日 08点33分55秒。2021年周润发还活着吗?2021年目前周润发还健在。周润发(Chow Yun Fat),1955年5月18日出生于香港南丫岛,籍贯广东省江门市开平市,华语影视男演员、摄影家,国家一...

flyme云相册功能是什么,要收钱吗-

本文共计948个文字,预计阅读时间需要3分0秒,由作者编辑整理创作于2023年08月19日 22点07分45秒。flyme云相册功能是什么,要收钱吗?云相册可以把你的照片上传到云空间里面,防止丢失,不收钱的。flyme云相册在电脑上怎么查看?电脑端查看需要登录360账号,您需要进入设置——账户——云...

pr医学指标是什么(pr是什么意思中文医学)

pr医学指标是什么(pr是什么意思中文医学)

本文共计2679个文字,预计阅读时间需要8分46秒,由作者编辑整理创作于2023年08月21日 15点42分58秒。pr医学指标是什么为孕激素受体,英文全称为progesterone-receptor,它是一种基因调节蛋白,主要参与调节生长因子受体通路。PR的表达为一些疾病的内分泌治疗提供了依据,同...