等比数列的定义和性质是什么-等比数列、二级等比数列定义以及它们的公式!
本文共计5482个文字,预计阅读时间需要18分7秒,由作者编辑整理创作于2023年09月10日 16点53分45秒。
等比数列的定义和性质是什么?
1、等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.
注意
2、等比数列的通项公式
由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.
注意
3、等比中项
如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项.
注意
4、等比数列的判定 ***
(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.
(2)、an2=an-1·an+1(n≥2,
an-1,an,an+1≠0){an}是等比数列.
(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.
5、等比数列的性质
设{an}为等比数列,首项为a1,公比为q.
(1)、当q>1,a1>0或0
1,a1<0或0
0时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.
(2)、an=am·qn-m(m、n∈n*).
(3)、当m+n=p+q(m、n、q、p∈n*)时,有am·an=ap·aq.
(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.
(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.
(6)、在{an}中,每隔k(k∈n*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.
(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.
(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.
(9)、若m、n、p(m、n、p∈n*)成等差数列时,am、an、ap成等比数列.
6、等比数列的前n项和公式
设等比数列a1,a2,a3,…,an,…,它的前n项和是sn=a1+a2+…+an,根据等比数列的通项公式可将sn写成sn=a1+a1q+a1q2+…+a1qn-1.…①
①两边乘以q得qsn=a1q+a1q2+a1q3+…+a1qn
…②
两式相减得
(1-q)sn=a1-a1qn,
由此得q≠1时等比数列{an}的前n项和的公式.
因为an=a1qn-1,所以上面公式还可以写成
.
当q=1时,sn=na1.
注意
7、等比数列前n项和的一般形式
一般地,如果a1,q是确定的,那么
8、等比数列的前n项和的性质
(1)、若某数列前n项和公式为sn=an-1(a≠0,±1),则{an}成等比数列.
(2)、若数列{an}是公比为q的等比数列,则
(ⅰ)、sn+m=sn+qn· *** .
(ⅱ)、在等比数列中,若项数为2n(n∈n*),则
(ⅲ)、sn,s2n-sn,s3n-s2n成等比数列.
等比数列、二级等比数列定义以及它们的公式!
后项减前项组成的为等比数列,原数列叫二级等比数列等比数列的通项公式是:An=A1*q^(n-1)
二级等比数列先用An+1-An求
再用等比数列公式
下面分享相关内容的知识扩展:
已知等比数列满足,则( )



已知等比数列满足,则( )
A. 243
B. 128
C. 81
D. 64
B
分析:利用条件确定等比数列的首项与公比,从而得到结果.详解:设等比数列

的公比为,∴

,∴

,即

∴

128故选:B点睛:等比数列的基本量运算问题的常见类型及解题策略:①化基本量求通项.求等比数列的两个基本元素

和

,通项便可求出,或利用知三求二,用方程求解.②化基本量求特定项.利用通项公式或者等比数列的性质求解.③化基本量求公比.利用等比数列的定义和性质,建立方程组求解.④化基本量求和.直接将基本量代入前

项和公式求解或利用等比数列的性质求解.
等比数列知识点总结与题型分类
一、等比数列的定义及性质
1.等比数列的定义:,称为公比.
2.通项公式:,首项:;公比:.推广:,从而得或
3.等比中项(1)如果成等比数列,那么叫做与的等差中项.即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列
4.等比数列的前n项和公式:
(1)当时,(2)当时,
(为常数)
5.等比数列的判定 ***
(1)用定义:对任意的n,都有为等比数列.
(2)等比中项:(0)为等比数列.(3)通项公式:为等比数列.
(4)前n项和公式:为等比数列
6.等比数列的证明 ***依据定义:若或为等比数列.
7.注意
(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.(2)为减少运算量,要注意设项的技巧,一般可设为通项;如奇数个数成等差,可设为…,…(公比为,中间项用表示);8.等比数列的性质
(1)当时
①等比数列通项公式是关于n的带有系数的类指数函数,底为公比.②前n项和,系数和常数项是互为相反数的类指数函数,底数为公比.(2)对任何m,n,在等比数列中,有,特别的,当m=1时,便得到等比数列的通项公式④当 *** 总结:高中数学必修5《等比数列》教案
高中数学必修5《等比数列》教案【一】
教学准备
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究 *** ;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、 问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(之一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?
师生共同简要回顾等差数列的通项公式推导的 *** :累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
*** 一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.
例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)
1、 小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、 作业:
P129:1,2,3
思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?
教学设计说明:
1、 教学目标和重难点:首先作为等比数列的之一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究 *** ,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究 *** 是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1) 通过复习等差数列的定义,类比得出等比数列的定义;
2) 等比数列的通项公式的推导;
3) 等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理 *** 的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的 *** ,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
高中数学必修5《等比数列》教案【二】
教学准备
教学目标
知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。
能力目标:培养运用归纳类比的 *** 发现问题并解决问题的能力及运用方程的思想的计算能力。
德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。
教学重难点
本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。
本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。
教学过程
二、教法与学法分析
①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造民主的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维为核心,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的 *** ,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。
三、教学程序设计
(4)等差中项:如果a 、 A 、 b成等差数列,那么A叫做a与b的等差中项。
说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。
2.导入新课
本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:
1 , 2 , 4 , 8 , … , 263
再来看两个数列:
5 , 25 ,125 , 625 , ...
···
说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:
判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。
-1 , -2 , -4 , -8 …
-1 , 2 , -4 , 8 …
-1 , -1 , -1 , -1 …
1 , 0 , 1 , 0 …
提出问题:(1)公比q能否为零?为什么?首项a1呢?
(2)公比q=1时是什么数列?
(3)q>0是递增数列吗?q<0递减吗?
说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈欲望。
3.尝试推导通项公式
让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。
推导 *** :叠乘法。
说明:学生从 *** 一中学会从特殊到一般的 *** ,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。 *** 二是让学生掌握“叠乘”的思路。
4.探索等比数列的图像
等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?
变式2.等比数列{an}中,a2 = 2 , a9 = 32 , 求q.
(学生自己动手解答。)
说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1 ,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元 *** 。
6.探索等比数列的性质
类比等差数列的性质,猜测等比数列的性质,然后引导推证。
7.性质应用
例3.在等比数列{an}中,a5 = 2 , a10 = 10 , 求a15
(让学生自己动手,寻求多种解题 *** 。)
*** 一:由题意列方程组解得
*** 二:利用性质2
*** 三:利用性质3
例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。
8.小结
为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。
1、等比数列的定义,怎样判断一个数列是否是等比数列
2、等比数列的通项公式,每个字母代表的含义。
3、等比数列应注意那些问题(a1≠0,q≠0)
4、等比数列的图像
5、通项公式的应用 (知三求一)
6、等比数列的性质
7、等比数列的概念(注意两点①同号两数才有等比中项
②等比中项有两个,他们互为相反数)
8、本节课采用的主要思想
——类比思想
9.布置作业
习题3.4 1②、④ 3. 8. 9.
10.板书设计
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。