两组均数样本量计算公式(临床研究样本量计算公式)
两组均数样本量计算公式
两组均数样本量计算公式如下:
研究实例:
目的为评价四种 *** 治疗贫血患者的效果,研究结局为治疗后血红蛋白量(g/L),为定量数据,将研究对象分为四组,估计治疗后血红蛋白量(g/L)增加的均数分别为18、13、17、10,各组标准差分别为10、9、9、8。要求双侧检验,α为0.05,把握度(检验效能)1-β= 90%,求需要多少样本量?
案例解析:
本案例评价的是四种 *** 治疗贫血患者的效果,研究结局为治疗后血红蛋白量(g/L),为定量数据,定量结局往往探讨的是2组或多组均数有无统计学差异。本例为4组均数的比较。
均数:
均数(平均数)是指在一组数据中所有数据之和再除以数据的个数。例如:1,3,5,7,这四个数字的均数是〔1+3+5+7)/4〕=4。它是反映数据集中趋势的一项指标。
临床研究样本量计算公式
临床研究样本量计算公式:样本量的计算公式为: N=Z²*σ²/d²,其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布。如果总体为非正态分布,样本统计量渐近服从正态分布。例如:一百个人的体重数据称为一个样本,其中样本量为1,样本容量为100。临床上研究的目的往往不同,而不同研究目的所采用的样本含量 *** 也往往不同。下面分享相关内容的知识扩展:
统计学中的有一个 样本量 这个是如何计算出来的?
公式:
(1)重复抽样方式下:
变量总体重复抽样计算公式:
样本量的计算,怎么得出实验主要指标的参考数据?
样本量估计 *** ,即样本量的计算公式,应根据研究背景、研究假设、设计模型、主要评价指标的数据特征等做出正确选择。由于样本量计算公式繁多,本文不做详细介绍,读者可参考《中国卫生统计》2012年至2014年连续刊发的"样本量估计及其在nQuery和SAS软件上的实现"系列文章(共19篇)。该系列文章以样本量估计专业软件nQueryAdvisor7.0为依据,系统介绍常用的样本量估计 *** ,给出计算公式及其权威出处,通过实例加以说明,同时还给出了SAS9.2软件实现的程序,便于广大读者应用。文后表1列出了常用的样本量估计 *** ,可看作通过统计检验 *** 正确选择样本量估计 *** 的一个索引。
抽样 ***
1、简单随机抽样
一般的,设一个总体个数为N,如果通过逐个抽取的 *** 抽取一个样本,且每次抽取时,每个个体被抽到的概率相等,这样的抽样 *** 为简单随机抽样。适用于总体个数较少的。
2、系统抽样
当总体的个数比较多的时候,首先把总体分成均衡的几部分,然后按照预先定的规则,从每一个部分中抽取一些个体,得到所需要的样本,这样的抽样 *** 叫做系统抽样。
3、分层抽样
抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层中独立抽取一定数量的个体,得到所需样本,这样的抽样 *** 为分层抽样。适用于总体由差异明显的几部分组成。
4、整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的 *** ,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
5、多段抽样
多段随机抽样,就是把从调查总体中抽取样本的过程,分成两个或两个以上阶段进行的抽样 *** 。
市场调查的抽样调查样本量公式n= Z2σ2/e2 和n= Z2P(1-P)/e2的区别还有σ代表什么
1.简单随机抽样确定样本量主要有两种类型:(1)对于平均数类型的变量
对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。
计算公式为:n=σ2/(e2/Z2+σ2/N)
特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2
例如希望平均收入的误差在正负人民币30元之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为1.96。根据估计总体的标准差为150元,总体单位数为1000。
样本量:n=150*150/(30*30/(1.96*1.96))+150*150/1000)=88
(2)于百分比类型的变量
对于已知数据为百分比,一般根据下列步骤计算样本量。已知调查结果的精度值百分比(E),以及置信度(L),比例估计(P)的精度,即样本变异程度,总体数为N。
则计算公式为:n=P(1-P)/(e2/Z2+ P(1-P)/N)
同样,特殊情况下如果不考虑总体,公式为:n= Z2P(1-P)/e2
一般情况下,我们不知道P的取值,取其样本变异程度更大时的值为0.5。
例如:希望平均收入的误差在正负0.05之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为1.96,估计P为0.5,总体单位数为1000。样本量为:n=0.5*0.5/(0.05*0.05/(1.96*1.96)+0.5*0.5/1000)=278
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。